Spine tumors 4 – Intradural Extramedullary Lesions

Lesions that occur within the thecal sac are categorized as intradural extramedullary lesions. The vast majority of these lesions are tumors. The most common are schwannomas (and other nerve sheath tumors) and meningiomas, but there are others that include ependymoma, metastatic disease, and lymphoma. Also remember that the intradural extramedullary space contains cerebrospinal fluid (CSF), so any process that diffusely affects CSF can affect this space.

Peripheral nerve sheath tumors are a group of benign and malignant nerve tumors including schwannomas and neurofibromas. These can expand the neural foramen and usually have well defined margins. Schwannomas tend to enhance a lot while neurofibromas enhance less.   Sarcoidosis is another common granulomatous disease that can affect the cord. The most common appearance is T2 abnormality within the cord with some enhancement. Enhancement is often along the surface of the cord.

Neurofibromatosis is a genetic syndrome with two types, type 1 and type 2. NF type 1 is characterized by multiple plexiform (involving more than one adjacent nerve root) neurofibromas. If neurofibromas increase in size rapidly, have necrosis, or cause pain, that can be a sign of malignant degeneration. NF type 2 is characterized by multiple masses including schwannomas, meningiomas, or ependymomas. NF type 2 is sometimes called MISME syndrome.

Schwannomas are probably the most common intradural extramedullary lesions. They are well defined lesions with avid enhancement. They often have central non-enhancement or cystic degeneration, but calcification or hemorrhage are less common.

Case 1 – Meningioma. Meningiomas are well demarcated intradural lesions which occur along the dura and deflect the spinal cord. They enhance avidly and usually don’t have necrosis. They frequently calcify, which you may appreciate more on CT. If they are more elongated and plaquelike they may be referred to as “en plaque” menigiomas. They can cross the dura and have components outside the dura as well.

Case 2 – Myxopapillary ependymoma. Myxopapillary ependymomas are relatively common tumors that occur around the conus and cauda equina. They usually enhance avidly. Necrosis or hemorrhage are more common than in schwannomas. They were previously grade 1 tumors but have been upgraded to grade 2 because they frequently recur.

Leptomeningeal metastases are a consideration anytime you see multiple intradural nodules. In adults, these are most commonly from the most common tumors such as melanoma, lung, and breat cancer. Lymphoma can also occur along the cauda equina. In pediatric patients you should also think about intracranial tumors that spread in the CSF, like medulloblastoma, pineal

Case 3 – Paraganglioma. Spinal paragangliomas are rare spine tumors that have a lot of abnormal surrounding vessels and are prone to hemorrhage. Think about them anytime you see an enhancing tumor in the spine with a lot of flow voids. The other thing you might think about is a hemangioblastoma, but they are more likely to be cystic.

Case 4 – Lipoma. Fat containing lesions along the conus are common and can be lipomas or dermoids. Clues are fat-suppression of FS images, chemical shift artifact, and fat density on CT. If it is thin and linear along the filum terminale, it is likely a benign fatty filum terminale.

Summary. Intradural extramedullary lesions are among the most common spinal lesions and it is important to have a clear differential when you see them.

The level of this lecture is appropriate for radiology residents, radiology fellows, and trainees in other specialties who have an interest in neuroradiology or may see patients with spine tumors.

Other videos on the spine tumor playlist are found here

Spine tumors 3 – Intramedullary tumor mimics

There are a wide range of lesions occurring in the spinal cord which can mimic tumors. This includes vascular lesions, inflammatory/demyelinating disease, sarcoid, and CSF flow abnormalities. This video takes a look at some of the range of possibilities.

Cord infarcts are areas of disruption of blood flow. Primary characteristics are abnormal diffusion imaging and acute onset. Often patients have other pathology such as recent aortic surgery or aortic dissection.

Sarcoidosis is another common granulomatous disease that can affect the cord. The most common appearance is T2 abnormality within the cord with some enhancement. Enhancement is often along the surface of the cord.

Neuromyelitis optica is a demyelinating disease characterized by long segment myelitis, often in the cervical cord. It is associated with optic neuritis and abnormal anti-aquaporin antibodies.

Radiation myelopathy can happen in patients that have had radiation to the cord or surrounding region. Knowing the history is important. Radiation necrosis frequently will have less mass effect than other tumors and will respond to steroids.

Syrinx or presyrinx can occur in the setting of CSF flow obstruction. This can commonly occur with conditions such as Chiari malformation or due to a large disc bulge. A cystic syrinx can cause mass effect and mimic tumor but will rarely have enhancement.

Arachnoid adhesions or webs are special situations of CSF obstruction where an adhesion in the CSF space deflects the cord contour. Due to deflection, CSF flow within the central canal can be disrupted and cause cyst-like expansion mimicking a tumor. The characteristic finding is the “scalpel sign” where the cord contour takes on the appearance of a surgical scalpel.

Summary. History is extremely important in evaluating potential spine tumors as additional history may inform you that a lesion isn’t a tumor at all.

The level of this lecture is appropriate for radiology residents, radiology fellows, and trainees in other specialties who have an interest in neuroradiology or may see patients with spine tumors.

Other videos on the spine tumor playlist are found here

Spine tumors 2 – Intramedullary lesions

In this lecture in the spine tumor series, we take a look at intramedullary lesions within the spinal cord. These are lesions that are within the dura and the substance of the spinal cord.

The most common intramedullary tumors are primary tumors of the cord itself, most commonly ependymomas and astrocytomas. Other things such as hemangioblastoma and cavernous malformations can also happen in the spinal cord. For the rest of this lecture, we take a look at a few case based examples of intramedullary tumors.

Case 1 – Astrocytoma. Astrocytomas are the second most common cord tumors and the most common tumors in young adults. They frequently have enhancement. Low grade tumors (grade 2) are the most common although glioblastomas/high grade tumors can also occur.

Case 2 – Ependymoma. Ependymomas are the most common cord tumors and the most common tumors in adults. They often have a cystic appearance with a well marginated nodular lesion. Hemorrhage and a “cystic cap” are common. Ependymomas are associated with neurofibromatosis type 2.

How to differentiate astrocytomas from ependymoma. Ependymomas are usually older patients with shorter segment lesions and well-defined margins, while astrocytomas are younger patients with more ill-defined margins.

Cord glioblastoma. Intramedullary glioblastoma has the same appearance as glioblastoma and appears like a high-grade lesion with mass effect, ill-defined margins, and necrosis.

Case 3 – Hemangioblastoma. Hemangioblastomas are common cord tumors and are associated with Von Hippel Lindau (VHL) syndrome. 1/3 are associated with the syndrome while 2/3 are spontaneous. Tumors often appear as a cyst with an enhancing nodule. You may see flow voids similar to those you see in the brain, although they are often harder to see. Patients with VHL may also have brain hemangioblastomas, endolymphatic sac tumors, and other systemic tumors (such as renal tumors).

Case 4 – Cavernous malformation. Cavernous malformations, sometimes referred to as cavernomas, can occur in the spinal cord. They have a similar appearance to cavernous malformations in the brain, often with a rim of siderosis and central T1 and T2 hyperintensity. Little to no enhancement is common.

Causes of hematomyelia (blood in the spinal cord). The differential for hematomyelia includes coagulation disorder, vascular malformations, anticoagulation medications, trauma, or cord tumor with repeated hemorrhage.

Take-home points.

  • The spinal cord is an extension of the brain and affected by similar pathologies
  • Tumors are the most common pathology. Astrocytomas (< 20 years old) and ependymomas (> 20 years old)
  • Other tumors can also affect the spinal cord

The level of this lecture is appropriate for radiology residents, radiology fellows, and trainees in other specialties who have an interest in neuroradiology or may see patients with spine tumors.

Other videos on the spine tumor playlist are found here.

Spine tumors 1 – Introduction to a location-based approach

Spine tumors can be a challenging topic for a neuroradiologist because we deal less with tumors in the spinal cord and spinal canal. However, there is a relatively simple approach that can hep you hone your differential diagnosis. This involves taking a location-based approach which divides the spinal canal into 3 main regions.

  • Intramedullary – in the spinal cord
  • Extramedullary intradural – in the thecal sac (within the dura) but outside the spinal cord
  • Extradural – outside the dura

Then, you can formulate your differential based on the normal structures in those regions. You can’t always tell the exactly location of a lesion, but you can use the displacement of normal structures to help you try to decide. Then you know how to guide your differential.

By the end of this video you will be able to name the three main compartments of the spine for classification of tumors. The subsequent videos will help walk you through the more specific locations using case examples and potential mimics.

Special thanks to Dr. Michael Hoch for helping with this lecture and Dr. John Loh for handing down the drawing over the generations!

The level of this lecture is appropriate for radiology residents, radiology fellows, and trainees in other specialties who have an interest in neuroradiology or may see patients with spine tumors.

Other videos on the spine tumor playlist are found here.

Imaging Spine Tumors

Spine tumors can be a challenging topic for a neuroradiologist because we deal less with tumors in the spinal cord and spinal canal. However, there is a relatively simple approach that can hep you hone your differential diagnosis. This involves taking a location-based approach which divides the spinal canal into 3 main regions. This series of videos shows the general approach as well as specifics about making a differential diagnosis in each of these locations.

Be sure to check back often as more videos are added that cover your favorite neuroradiology exams, or check out our full channel on Youtube.

Skull Base Foramina Imaging Anatomy

In this video, Dr. Bailey reviews the most important things you should know about the skull base anatomy with an emphasis on CT imaging.   With this quick video, in just a few minutes you can learn about the most important skull base foramina when reviewing CT.

 

Optic canal. Contains the optic nerve, optic sheath, and ophthalmic artery.

Superior orbital fissure. Multiple cranial nerves to the orbit (III, IV, V1, and VI) as well as the superior ophthalmic vein.

Inferior orbital fissure. Contains the infraorbital artery, nerve, and vein. It’s a little harder to identify because it is smaller and more inferior.

Pterygopalatine fossa (PPF) and foramen rotundum. The PPF is a fat containing structure which contains the V2 segment of the trigeminal nerve. The foramen rotundum carries the V2 segment through the wall of the sphenoid sinus into the PPF.

Foramen ovale. Contains the mandibular nerve (V3), the accessory meningeal artery, the lesser petrosal nerve, and an emissary vein connecting the cavernous sinus to the pterygoid plexus.

Foramen spinosum. Contains the middle meningeal artery and vein and an meningeal branch of the mandibular nerve. It is the smaller foramen lateral to the foramen ovale.

Vidian canal. Contains the vidian nerve, artery and vein. It is best seen on coronal along the inferior margin of the sphenoid sinus at the level of the pterygoid plates.

Hypoglossal canal. Contains the hypoglossal canal. Best seen on the axial medial to the jugular foramen. Can also be seen on the coronal below the beak of the “eagle” sometimes described.

Foramen magnum. A large opening in the occipital bone containing the brain stem and upper spinal cord, vertebral arteries.

Check out more of our content on head and neck imaging by seeing all H&N related posts or on the H&N Imaging Topic page.

 

See this and other videos on our Youtube channel

Spaces of the Head and Neck

This video describes the soft tissue spaces of the head and neck, including common normal anatomy and structures found in each region as well as potential pathology that can commonly arise there. By knowing the spaces, you can be more prepared to determine what diseases might occur there and formulate a better differential diagnosis.

 

Masticator space. Contains the muscles of mastication, the mandible, branches of the trigeminal nerve, lymph nodes, and minor salivary glands. 

Parotid space. Contains deep and superficial portions of the parotid gland, branches of the facial nerve, lymph nodes, the retromandibular vein, and the external carotid artery and its branches.

Carotid space. Contains the carotid sheath, internal jugular vein, cranial nerves IX-VI, sympathetic nervous system branches, and lymph nodes.

Parapharyngeal space. Predominantly composed of fat, with minor salivary glands and lymph nodes. Most useful for how it is displaced (medially if it is in the masticator space, carotid space, or parotid space, or laterally if it is a mucosal lesion)

Retropharyngeal space. Contains, fat, lymph nodes, and minor salivary glands. 

Perivertebral/vertebral space. Contains muscles, the vertebral bodies, fat, blood vessels, and nerve roots.   

Infrahyoid visceral space. Contains the thyroid and parathyroid gland, the esophagus, and the trachea. Vessels and nerves are also found here.

Check out more of our content on head and neck imaging by seeing all H&N related posts or on the H&N Imaging Topic page.

 

See this and other videos on our Youtube channel

Head and neck anatomy landmarks

Today, Dr. Bailey is back with a video about her approach to head and neck anatomy using landmarks. With this quick video, in about 5 minutes you can learn to quickly differentiate the important anatomical subsites of the head and neck on computed tomography.

 

Nasal cavity versus the nasopharynx. The nasal cavity and nasopharynx are both above the hard palate up to the cribriform plate. The nasopharynx begins just behind the posterior margin of the hard palate

Oral cavity vs oropharynx. Similarly, the oral cavity includes the tissue below the hard palate and anterior to its posterior margin, while the oropharynx includes what is posterior to the margin of the hard palate.

Floor of the mouth. The floor of the mouth is predominantly made of muscular structures, including the genioglossus, hyoglossus, and mylohyoid.

Hypopharynx. The hypopharynx consists of the pyriform sinuses, the lateral and posterior pharyngeal walls, and the posterior surfaces of the larynx extending to the cervical esophagus.

Supraglottic larynx. The supraglottic larynx includes everything from the tip of the epiglottis down to the laryngeal ventricle.

Larynx-glottis. The glottis includes the larynx and true vocal cords, including the anterior and posterior commissures.

Larynx-subglottis. The subglottis extends from the inferior aspect of the true vocal cords to the cricoid cartilage. Below the cricoid cartilage is the trachea.

See this and other videos on our Youtube channel

Cervical Lymph Node Stations – a landmark approach

In this quick video, Dr. Bailey walks us through a quick overview of 6 of the common cervical nodal stations in the neck. Each lymph node in the neck is assigned one of these 6 levels based on their relationship with normal anatomic structures in the neck. These stations are important in communicating with other physicians which abnormal nodes we are talking about.

By using only these 8 landmarks, you can feel confident that you are properly identifying the right nodal locations:

1. Anterior belly digastric
2. Submandibular gland
3. Hyoid bone
4. Cricoid cartilage
5. Sternocleidomastoid muscle
6. Clavicles
7. Carotids
8. Sternum

Hopefully this helps you be more clear in your reports and better understand the different lymph node levels in the neck.

Thanks for tuning in and be sure to check out the head and neck topic page as well as all the head and neck videos on the site.

 

See this and other videos on our Youtube channel

Temporal bone CT – Pathology based approach

In this second video about the temporal bone, Dr. Katie Bailey from the University of South Florida goes over some common pathology of the temporal bone. If you haven’t seen the first video and want to learn more about a general approach to reviewing temporal bone CT, go back and check out the first video.

The overview puts this video in the context of the outside-in approach reviewed in the first video. You can think about which diseases are most prevalent in each compartment based on location. A general differential of infection, inflammation, and tumor is a good place to start.

Otitis externa – a common pathology characterized by thickening of the mucosa of the external auditory canal. It may be accompanied by fluid in the mastoids and middle ear.

Malignant otitis externa – a variant of otitis externa in which you have destruction of the adjacent bone. You can also have soft tissue or intracranial abscesses as a complication.

External auditory canal neoplasm – soft tissue in the external auditory canal with adjacent bone destruction. The imaging appearance overlaps with malignant otitis.

Otitis media – characterized by fluid within the middle ear and around the ossicles. Most commonly in the mesotympanum and hypotympanum. There is often associated fluid in the mastoid air cells (otomastoiditis).

Cholesteatoma – a soft tissue mass often originating in Prussak’s space which results in blunting of the scutum and bone erosion.

Ossicular disruption – the ossicular chain can be disrupted, most often in trauma. The most common disruption is the malleoincudal joint, or loss of the “ice cream cone”.

Aberrant ICA – as a variant, the internal carotid artery can be located too medially, where it will lack a complete bony covering in the foramen lacerum. This can lead to complications of mastoid surgery and is important not to miss.

Dehiscent jugular bulb – the jugular vein should also have a bony covering between it and the middle ear.

Tympanicum paraganglioma (glomus tympanicum) – a vascular tumor of the middle ear starting at the cochlear promontory.

Labyrinthitis ossificans – sclerosis of the cochlea or semicircular canals. The cochlea or semicircular canals may be narrowed or sclerotic, usually from prior infection.

Semicircular canal dehiscence – loss of bone adjacent to the semicircular canal. This most commonly occurs along the superior aspect of the superior semicircular canal.

Otosclerosis – abnormal bone most commonly in the fissula ante fenestrum, manifested by lucent bone where it should be dense cortical bone.

Facial nerve – the facial nerve should have a smooth bony covering around it. If you see loss of bone, you should think about a hemangioma or a facial nerve schwannoma, two tumors that frequently occur in this area.

Thanks for tuning in and be sure to come back to check out part 1, temporal bone CT search pattern. Or you can see all of the temporal bone videos or all the search pattern videos.

 

See this and other videos on our Youtube channel