Welcome to our new series, Brain Bites, where we are going to be making short videos featuring other physicians and learners explaining neuroradiology concepts in short, easily digestible bites. Hopefully these videos will give you some quick points so that you can become more effective at evaluating brain and spine imaging.
Today’s video is focused on central neurocytoma and is presented by Stefani Yates, a medical student at Morehouse School of Medicine.
Central neurocytoma is a heterogeneous mass which usually occurs in the frontal horn of the lateral ventricle along the septum pellucidum, or the then septation that separates the lateral ventricles. These masses are usually heterogeneous on T2, isointense or similar to gray matter on T1, and enhance heterogeneously and avidly. In this case you can see a mass in the left frontal horn along the septum pellucidum.
Patients can be asymptomatic or they may present with nonspecific features such as a headache, as this patient did. Treatment is usually surgical resection, or they can be conservatively managed.
The differential diagnosis includes:
Ependymoma – an enhancing mass more common in the 4th ventricle
Subependymoma – a ventricular mass which usually does not enhance
Meningioma – a ventricular mass most common in the occipital horn which has more homogeneous enhancement.
So, if you see an intraventricular mass along the septum pellucidum, keep in mind central neurocytoma. Thanks for watching today!
This video is the 2nd unknown case that goes with the brain imaging capstone course. If you want to follow along, you can find all the images for the case at the brain capstone page.
Introduction
60 year-old man with personality changes and lack of motivation with flat affect for 1-2 months
Interactive review
In this case, there is an MRI showing a mass in the bilateral frontal lobes, but more in the right frontal lobe. It crosses the corpus callosum. It is markedly enlarged with FLAIR and T2 hyperintensity, abnormal DWI suggesting high cellularity, and a few areas of hemorrhage on SWI.
On post-contrast imaging, you see a mass with peripheral enhancement and central necrosis (a ring enhancing mass). There are multiple additional areas of enhancement (multifocal enhancement). Findings are very concerning for a high grade tumor, such as a glioblastoma.
Case findings summary
Here you can see screenshots of the findings which we saw in the interactive case review.
Interactive question
What makes this tumor appear high grade? Central necrosis, thick nodular rind of enhancement, multifocal enhancement, restricted diffusion, crosses midline (corpus callosum)
Diagnosis and Summary
This is a case of glioblastoma. These are high grade tumors of the brain which have a very poor prognosis, and are one of the few aggressive lesions which will cross from one side of the brain to the other. This is a classic appearance of GBM.
Thanks for tuning in to this case. There are a total of 7 cases you can review on your own at the website and explanations will be posted here.
This video is the 1st unknown case that goes with the brain imaging capstone course. If you want to follow along, you can find all the images for the case at the brain capstone page.
History
83-year-old female with h/o hypertension presents with altered mental status, slurred speech, left hemiplegia and right sided gaze
Interactive review
In this case, there is a CT showing an area of hypodensity and loss of gray-white differentiation in the right cerebral hemisphere. There is a corresponding area of vascular occlusion at the right carotid terminus on the CT angiogram
On the MRI, you can see a large area of DWI abnormality in the left MCA distribution confirmed on the ADC imaging. There is corresponding FLAIR abnormality. These are all findings of an MCA distribution infarct.
Case findings summary
Here you can see screenshots of the findings which we saw in the interactive case review.
Interactive questions
Test your knowledge learned during the rest of the course and on this case.
Summary
Thanks for tuning in to this case. There are a total of 7 cases you can review on your own at the website and explanations will be posted here.
Brain imaging course – 5 – Common imaging pathology
This video is the fifth in a series of a brain imaging course. In this video, we review some of the most common imaging pathologies that you’ll encounter, particularly in hospitalized patients.
This video is going to focus on some of the most common pathologies that you’ll encounter in brain imaging. We’ll review common CT and MRI findings that you’ll see on those cases. The most common pathologies a beginner should be familiar with are stroke, hemorrhage, hydrocephalus, tumor, and infection.
Stroke
Stroke is death of tissue due to occlusion of blood flow, and more specifically, oxygen delivery, to the brain. This is most commonly caused by arterial obstruction or less commonly venous obstruction. Most of the time we start imaging with CT, where you may see loss of gray-white differentiation in a vascular territory. Vascular imaging and MRI are excellent supplements for evaluation stroke. Be sure to look out for complications such as stroke and hemorrhagic conversion. The example shows you an example of a left MCA infarct in a patient with endocarditis. Over time, stroke gets more hypodense and more well-defined. Cortical necrosis is a specific deposition of blood in the cortex which is a benign finding and should not be called hemorrhagic conversion. Stroke almost always corresponds to a vascular territory, so it is valuable to know the territory distributions of the ACA, MCA, and PCA.
Hemorrhage
Hemorrhage is the development of acute blood products, particularly in the brain. It is characterized by where it located, and the location is an excellent clue to what is the most common cause. Acute blood starts hyperdense to the surrounding brain parenchyma and will gradually decrease over time.
Subarachnoid hemorrhage is one of the most common types of hemorrhage that you may encounter. It is commonly caused by trauma or aneurysm rupture. If you see subarachnoid hemorrhage, you should get a CT angiogram to look for the cause of hemorrhage.
Extra-axial hemorrhages include subdural hematoma and epidural hematoma. Subdural hematomas can be spontaneous, associated with anticoagulation, or associated with trauma. They cross sutures and spread along dural reflections. Epidural hematomas are almost always associated with skull fractures.
Parenchymal hemorrhages occur in the brain itself. The most common cause is hypertensive hemorrhage, which occurs most commonly in central locations like the basal ganglia, thalamus, pons, and cerebellum. Peripheral hemorrhages may be caused by other things like venous infarct, cerebral amyloid angiopathy, or tumors.
Hydrocephalus
Hydrocephalus is enlargement of the ventricles that can be due either to decreased resorption of CSF or blockage of CSF flow. There are two main types, communicating, which is an issue with CSF resorption, or non-communcating/obstructing. The example shows you a case of hydrocephalus from an obstructive mass at the foramen of Monro. Increase in size and ventricle contour are your clues. Edema around the ventricles is a clue that hydrocephalus may be acute.
Tumor
Tumors are space occupying lesions or masses within the brain. They can be located within the brain parenchyma (intra-axial) or outside the brain (extra-axial). The most common intra-axial tumors are metastases and primary tumors, while the most common extra-axial tumor is a meningioma. If lesions are single, it’s more likely to be a primary tumor or solitary metastasis. Multiple lesions may be lymphoma or metastatic disease. The example shows you a peripherally enhancing and centrally necrotic high grade glioma in the left temporal lobe.
Infection
Infection is characterized by location. Meningitis is infection of the CSF space or meninges. Encephalitis is infection of the brain parenchyma. Walled off masslike infection is called abscess. Patients who are immunocompromised, such as patients with HIV or patients on immune suppression for organ transplants or autoimmune conditions are more at risk.
The example shows a patient with a single focal lesion with diffusion hyperintensity in the parietal lobe. Many times you can’t tell the cause of infection just from imaging, but will need correlation with CSF labs, systemic labs, and other history to know the organism. Sometimes you’ll even need a biopsy.
Summary
Thanks for tuning in to the video. Hopefully you are now familiar with some of the most common brain pathology and are ready to check out some cases on your own. The next 7 videos will walk you through independent review of cases you can review on the website.
Brain imaging course – 4 – Reviewing a normal case
This video is the fourth in a series from brain imaging course. In this video, we go through a normal brain imaging case in a patient who is normal. We first go through a head CT and then the patient’s brain MRI.
In this video, we are going to go through a normal case together. I’ll show you how to apply what you’ve learned in the other videos on your own. Be aware of the strength of having a structured pattern when looking at the images so you can use them effectively.
Normal Head CT
A normal head CT search pattern begins on the brain images. I go from top to bottom, looking for symmetry, gray-white differentiation, and normal underlying structures. I also first review the brain window, then the bone window, then any reformats.
On the brain window, I start at the bottom, reviewing normal structures for symmetry, including normal CSF structures. White matter should be a little less dense than gray matter because it has higher fat/myelin content. You should see some gray-white differentiation in the basal ganglia structures. As you reach the vertex, you should see symmetric sulcation, and the brain should be coated with gray matter in all locations. If you lose gray-white differentiation, that can be a sign of stroke.
CT bone window
On the bone window, I also start at the bottom, looking for any fractures in the skull base, any destructive lesions, and that the cortex is maintained everywhere. I will often come back and look at soft tissues using a soft tissue window, including the orbits, sinuses, and facial soft tissues.
CT reformats
There are two reformats provided with this case. The coronal reformat is great to look at the convexity, the floor of the anterior and middle cranial fossa, and the posterior fossa (cerebellum). The sagittal reformat is similar with the additional advantage of being able to see some midline structures like the corpus callosum really well.
Normal Brain MRI
Reviewing a normal MRI is similar, but you need to make multiple passes because of the different information that is found on different sequences. Each sequence has its own advantages, so use them to your benefit.
DWI is great for seeing restricted water movement. Strokes and abscesses are usually hyperintense. You can use the ADC (not shown) just to make sure it is not bright from T2 effects only (“T2 shine through”).
FLAIR
FLAIR is a real workhorse of clinical imaging. You can recognize FLAIR because the white matter is darker than gray matter. Pathology will be bright because it has excess water. CSF is suppressed on FLAIR imaging, which makes pathology easier to see.
GRE
Gradient recalled echo (GRE) T2 imaging is a blood sensitive sequence which is good to see iron, hemosiderin, blood, and air. These things will be dark on GRE. Some normal structures like blood vessels and iron containing nuclei can be darker normally.
T2
T2 is like FLAIR in that pathology tends to be bright (hyperintense). However, the fluid is not suppressed. This gives you a little bit better view of fluid filled structures like the ventricles but you see pathology in the brain parenchyma worse.
Pre-contrast T1
T1 has the opposite contrast of T2, in that white matter is hyperintense to gray matter. This is a key trick for identifying what kind of imaging you are looking at. T1 precontrast images are great for seeing normal anatomical structures as well as the normal marrow. They are also important to compare pre-contrast
Post-contrast T1
The post-contrast T1 is a key sequence because it will identify areas of breakdown of the blood brain barrier. Pathology like tumors, infection, and demyelination, will often enhance. Some normal structures like vessels, the pituitary, and choroid plexus enhance normally.
Conclusion and recap
Thanks for tuning in to the video. Hopefully now you have developed your own basic approach to brain imaging that you can use on the test cases. On the next video, we’ll review some of the most common brain pathology. The final videos will provide some individual cases you can go through on your own.
Brain imaging course – 3 – How to review brain cases
Introduction
This video is the third in a series of a brain imaging course. In this video, we talk about basics of how to review brain cases on your own, including some tips for how to get effective at finding abnormalities and learning your on your own.
When you are reviewing brain cases, you need a structured way of looking at each case to make yourself a sensitive and effective radiologist. This is called a search pattern. You also need to know the ways in which the different images you are provided are different. For example, images can be provided at different thicknesses. In general, thinner images have sharper edges but more noise. Thicker images are better for looking at the bones.
We also have different reformats. On CT, that is usually from one set of data that is displayed in a different plane. The most conventional is perpendicular to the long axis of the body, or axial. Coronal is parallel to the face. Sagittal is parallel to the long axis of the nose. Each of these views has relative strengths and weaknesses.
CT density, window, and level
CT images are standardized for the degree of x-ray absorption, which is closely tied to the density of the material. Each type of tissue has a typical expected density that will be roughly the same on different scanners.
The window and level of a set of images control what is shown on the screen at one given time. The window is the size of the range, or width of the range, of data shown. The level is the center of the range being shown, sometimes referred to as the center. These values are akin to brightness and contrast, although somewhat more exact.
Brain window is structured to see the difference between gray matter and white matter, which is very small, but is poor at seeing very dense structures like bone. For that, a much wider window, the bone window is used.
Basic search pattern
When you are looking at a CT, you need a pattern for looking at each feature in the images. I usually start from the bottom, looking at the brain and focusing on symmetry. Then I move to the bone windows, checking the calvarium, temporal bone, orbits, and sinuses. I may spend an extra minute or two looking at the orbits and soft tissues. To learn more in detail about a head CT search pattern, check out the video.
When reviewing an MRI, you have a similar strategy, but given the different strengths and weaknesses of each sequence, you use each one with a slightly different emphasis. To learn more in detail about how to review a brain MRI, check out the video overviewing MRI sequences and how to review them.
Conclusion
Thanks for tuning into the video about general approaches to brain imaging. On the next video, we’ll have a structured review of a normal case that you can follow along with on your own.
This video is the second in a series of a brain imaging course. In this video, we talk about when to order different types of imaging and the relative advantages of each type of imaging. This includes head CT, brain MRI, and the different types of vascular imaging like CT angiography and MR angiography.
Head CT is one of the most commonly performed neuroradiology exams. It’s a common screening exam that is performed for indications like trauma, new neurologic symptoms (such as weakness or sensory symptoms), or the worst headache of someone’s life. Head CT is also very commonly performed on patients with known brain abnormalities to investigate whether they are changing.
CT vessel imaging
CT can be performed with timing to evaluate arteries (angiography) or veins (venography). CT angiography (CTA) is frequently performed for acute stroke, trauma, or if the patient has a hemorrhage.
CT venography (CTV) is done to evaluate the veins. This is most commonly done if a patient has elevated intracranial pressure (or papilledema), an atypical hemorrhage that could be due to venous thrombosis, or if there is trauma near a dural sinus.
MRI brain
MRI of the brain is the workhorse of neuroradiology. You would want to order an MRI of the brain if a patient had a known abnormality that was found on a head CT. An MRI can give you much more information about the underlying abnormality.
If the patient has continued symptoms but a normal head CT, that is another reason to get an MRI. It is much better at seeing small or subtle abnormalities in the brain. In general MRI is a better exam for indications with it is not time-sensitive.
When do MRIs need contrast?
It’s a constant question of when patients should get contrast on MRI of the brain. For low probability screening exams for conditions like headache, stroke, or dizziness, an MRI without contrast is usually adequate. For higher probability of a significant abnormality, you may need contrast. For example, if a patient has concern for meningitis or intracranial abscess, contrast is helpful. Contrast is also usually used when patients have tumors or possible metastatic disease.
In general contrast is needed when there is a higher suspicion of an acute abnormality.
MR vessel imaging
MR angiography (MRA) and venography (MRV) is most commonly used when vascular abnormalities need to be evaluated, but time is not a major concern. This is often done in cases of strokes when the patient has had symptoms for a while (often more than 24 hours). MRA is great for evaluating aneurysm and vascular malformations. MRV can see venous thrombosis and other abnormalities.
Summary
Thanks for tuning in to the video. Hopefully you learned a lot about how to choose the best brain imaging for your patients. The next video will cover basic concepts about reviewing brain imaging on your own.
See all of the search pattern videos on the brain course playlist.
This video is the first in a series of a brain imaging capstone course to learn some of the basics about brain imaging. The overall series will cover the range of imaging used to investigate the brain, information about how to choose what type of study will help your patient, teach you how to review images on your own, review some common pathology, and then provide some interactive courses that you can review on your own.
The main types of imaging, or modalities, used in brain imaging, are computed tomography (CT) and magnetic resonance imaging (MRI). Each of these can be tailored in specific ways to look at vessels, including arteries or veins.
CT head without contrast
CT head is the main screening exam used in neuroradiology. This is commonly done any time a patient has new neurologic symptoms and can see common pathologies such as stroke, hemorrhage, fracture, edema, and hydrocephalus. Once patients are in the hospital, it may be used to follow up their pathology.
CT head with contrast
While possible, we almost never perform CT of the head with contrast because MRI is a much better examination and will almost always be done anyway.
CT angiogram
CT angiogram, or CTA, is an arterial timed exam to look at the arteries of the brain. This is very commonly done in evaluation of stroke, intracranial hemorrhage, and trauma. Aneurysm and vascular malformations are very well evaluated by CTA.
CT venogram
A CT venogram, or CTV, is very similar to a CTA, but the timing is a little later. This is optimal for evaluating the veins of the brain for thrombosis or trauma.
X-rays
We don’t use many x-rays in neuroradiology, but you may see a few to evaluate for shunts and hardware. CT is almost always better, particularly in trauma.
MRI brain
MRI of the brain is a workhorse of neuroradiology. It has great tissue contrast and is excellent for finding diseases of the brain. Some limitations include availability/expense, limitations in patients who have devices, and the time that it takes. There are a variety of sequences that we use in MRI of the brain, and each tells us a little bit of something different about the brain.
T1 precontrast
The T1 precontrast images are useful for evaluating the overall brain structure and alignment. It is also useful for comparing to postcontrast imaging to see how much enhancement there may be.
T2/FLAIR
T2 images are water-sensitive images on which most pathology will show up as bright. It is great for looking at edema, swelling, and fluid-filled structures. FLAIR images are very similar to T2, but the fluid has been suppressed. This helps pathology be more obvious and easier to detect.
Diffusion (DWI)
This is a measure of how well water moves through tissue. In stroke, water moves into cells and can’t move as freely, resulting in areas of stroke being bright on DWI.
Blood sensitive imaging
Gradient imaging (GRE) or susceptibility weighted imaging (SWI) provide a chance to better detect calcium and blood, which will appear dark.
T1 postcontrast
These T1 images are obtained after an intravenous contrast agent has been administered. Things that enhance, or are bright on these images but not the precontrast images, accumulate contrast. This often occurs in pathologies like tumors because the blood-brain barrier has become leaky.
MRA head
MRA of the head is (most frequently) a noncontrast technique to evaluate the vessels of the brain. This is a great technique to see the vessels of the brain if you are not in a rush, particularly to see aneurysms and vascular malformations.
MRA neck
Similar to MRA of the head, this is vessel imaging of the neck. You can do it without contrast or with contrast, but contrast often helps see the vessels at the thoracic outlet better.
MR venogram
Like a CT venogram, an MR venogram is a dedicated exam to look at veins to look for venous thrombosis or venous injury.
Summary
Thanks for tuning in to the video. Hopefully you learned a lot about the types of imaging used to evaluate the brain.
See all of the search pattern videos on the brain course playlist.
This playlist covers a range of topics in vascular imaging including general concepts about how to approach brain and neck vascular imaging, what intracranial aneurysms, are, and how to improve your aneurysm search pattern.
You can learn more about other concepts in vessel imaging and other abnormalities on the vascular imaging page. If you haven’t already, you might consider taking a look at the vascular imaging capstone course. Also, please check out our full channel on Youtube.
«
Prev
1
/
1
Next
»
Introduction to Vascular Imaging of the Head and Neck
Vascular Imaging of the Head and Neck - Pathology
How to read a CT angiogram (CTA) of the Head and Neck
Fast 10: Neuroradiology high speed case review part 6 – Cases 51-60
In this 6th video, we present 10 more neuroradiology high speed review cases so you can review them quickly before your exams. If you want to see more information about these cases, you can find longer versions on the channel under the Board review playlist